PX200 Power Amplifier

The PX200 is a low-noise high-current linear amplifier for driving piezoelectric actuators and other loads. The output voltage range can be unipolar, bipolar, or asymmetric from 50V to 200V. Refer to the specifications table for the available output voltage ranges. Two amplifiers can be connected in bridge-mode to provide up to +/-200V or +400V. The PX200 has a high output current up to 13 Amps peak and is well suited to precision applications that require high power and frequency.

The PX200 can drive any load impedance including unlimited capacitive loads such as stack actuators; standard piezoelectric actuators; two wire benders; and three-wire piezoelectric benders requiring a bias voltage. Bias voltages can be generated using two auxiliary outputs linked to the power supply voltages.

A range of front panel controls provide maximum application flexibility, these include input signal inversion, variable gain, DC offset, and variable voltage limits. A 9-pin DSUB connector on the front panel includes signals for the input, voltage monitor, current monitor, shutdown monitor, and shutdown command. A four-digit LCD screen also displays the DC voltage.

The output connectors include BNC, LEMO 00, LEMO 0B.302, and plug-in screw terminals. The PX200 is suited to a wide range of applications including electro-optics, ultrasonics, vibration control, nanopositioning systems, and piezoelectric motors.

PX200 – 140 Watt Voltage Amplifier - Specifications and User Manual

PX200 - 140 Watt Voltage Amplifier PiezoDrive
  • $USD2890 + Shipping
  • Enquiry

    • Quotes Requests can be downloaded by adding products to the online cart, then choosing “Download Instant Quote” during checkout, or contact us.

      Response Times are typically 2-3 days for non-technical enquiries, and 3-14 days for technical enquiries. We apologize for the delay during busy times.


    • This field is for validation purposes and should be left unchanged.


  • Obtain instant quote

    • Click Buy Now
    • Select desired options
    • Add to cart
    • Proceed to checkout
    • Enter details
    • Download instant quote

Output Voltage Range

The output voltage range is specified when ordering. The standard voltage ranges and associated current limits are listed below. Since the PX200 has front panel controls for reducing the positive and negative output voltage range, choose a range equal to or slightly greater than required.

Negative
Voltage
(Volts)
Positive
Voltage
(Volts)
RMS
Current
(Amps)
Peak
Current
(Amps)
Pulse
Current

[1]
Gain
[2]
Var
[3]
Order
Code
0 200 1.6 3 9 20 A PX200-P200
0 150 2.1 4 10 15 A PX200-P150
-50 150 1.6 3 9 15 A PX200-N50-P150
-50 100 2.1 4 10 10 A PX200-N50-P100
-100 100 1.6 3 9 10 A PX200-N100-P100
-100 50 2.1 4 10 10 A PX200-N100-P50
-100 0 3.1 6 13 10 A PX200-N100
-150 0 2.1 4 10 15 A PX200-N150
-200 0 1.6 3 9 20 A PX200-N200
0 175 1.8 3 10 20 B PX200-P175
-25 150 1.8 3 10 15 B PX200-N25-P150
-25 100 2.7 4 10 10 B PX200-N25-P100
-75 100 1.8 3 10 10 B PX200-N75-P100
-75 50 2.7 4 10 10 B PX200-N75-P50
0 125 2.7 4 10 15 D PX200-P125
-25 125 2.1 4 10 15 D PX200-N25-P125
-75 75 2.1 4 10 10 D PX200-N75-P75
0 100 3.1 6 13 10 E PX200-P100
0 75 4.1 6 13 10 E PX200-P75
0 50 5.3 9 13 10 E PX200-P50
0 25 5.3 9 13 10 E PX200-P25
-25 75 3.1 6 13 10 E PX200-N25-P75
-25 50 4.1 6 13 10 E PX200-N25-P50
-25 25 5.3 9 13 10 E PX200-N25-P25
-50 50 3.1 6 13 10 E PX200-N50-P50
-50 25 4.1 6 13 10 E PX200-N50-P25
-50 0 5.3 9 13 10 E PX200-N50
-75 0 4.1 6 13 10 E PX200-N75
-100 0 3.1 6 13 10 E PX200-N100

Table 1. Preferred voltage range configurations.

Notes

  1. Refer to the user manual for details on the pulse current limit
  2. The gain can be increased by up to another factor of 10 using the front panel control
  3. The variant is the hardware version required for the chosen configuration

Specifications

Electrical Specification
Slew Rate 35 V/us
Signal Bandwidth 390 kHz
Max Power 140 W Dissipation
Load Any
Noise 150 uV RMS (10uF Load, 0.03 Hz to 1 MHz)
Protection Continuous short-circuit, thermal
Voltage Monitor 1/20 V/V
Current Monitor 1.5 V/A if peak current is 6 Amps or less
0.5 V/A if peak current is greater than 6 Amps
Input Impedance 48.7 kOhms
Output Impedance 1.5 Ohms
Output Connectors LEMO 0B, LEMO 00, Screw Terminals, BNC
Power Supply 90 Vac to 250 Vac
Mechanical Specifications
Environment 0-40 C (32-104 F) Non-condensing humidity
Dimensions 212 x 304.8 x 88 mm (8.35 x 12 x 3.46 in)
Weight 2 kg (4.4 lb)
Compatible Actuators
Stack Actuators Up to +200V
Plates and Tubes +/-100V or +200V
Two Wire Benders +/-100V or +200V
Three Wire Benders Up to +200V with +200V bias, or +/-100V with +/-100V bias

Power Bandwidth

The online power bandwidth calculator estimates the highest achievable frequency with a capacitive load impedance. The calculator considers the current limit, slew-rate, output impedance, and small-signal bandwidth.

With a capacitive load, the maximum operating frequency due to the RMS current limit is

$$f_{max} = \frac{I_{rms}\sqrt{2}}{V_{pp}C\pi}$$

where $I_{rms}$ is the current limit, $V_{pp}$ is the peak-to-peak output voltage, $C$ is the load capacitance. The above equation is also true for any periodic waveform, including triangle waves and square waves.

The ‘power bandwidth’ is the maximum frequency at full output voltage. When the amplifier output is open-circuit, the power bandwidth is limited by the slew-rate; however, with a capacitive load, the maximum frequency is limited by the RMS current and load capacitance. The power bandwidth for a range of capacitive loads is listed below.

Load 50 Vp-p 75 Vp-p 100 Vp-p 125 Vp-p 150 Vp-p 175 Vp-p 200 Vp-p
10 nF 222930* 148620* 111465* 89172* 74310* 63694* 55732*
30 nF 222930* 148620* 111465* 89172* 74310* 63694* 55732*
100 nF 222930* 148620* 111465* 89172* 62000 45714 35000
300 nF 160000 82667 46667 32000 20667 15238 11667
1 uF 48000 24800 14000 9600 6200 4571 3500
3 uF 16000 8267 4667 3200 2067 1524 1167
10 uF 4800 2480 1400 960 620 457 350
30 uF 1600 827 467 320 207 152 117

Table 2. Maximum frequency (Hz) versus load capacitance and output voltage span

In the above table, the frequencies limited by slew-rate are marked with an asterisk. The slew-rate is approximately 35 V/uS which implies a maximum frequency of
$$f^{max}=\frac{35\times 10^{6}}{\pi V_{pp}}$$

Small Signal Bandwidth

The small-signal frequency response and -3 dB bandwidth is described in Figure 1 and Table 3.

PX200 Small Signal Bandwidth

Figure 1. Small signal frequency response for a range of load capacitances.

 

Load Capacitance Bandwidth
10 nF 393 kHz
30 nF 431 kHz
100 nF 367 kHz
300 nF 208 kHz
1 uF 88 kHz
3 uF 30 kHz
10 uF 9.3 kHz
30 uF 3.7 kHz
110 uF 1.3 kHz

Table 3. Small signal bandwidth versus load capacitance (-3dB)

Noise

The output voltage noise contains a low frequency component (0.03 Hz to 20 Hz) that is independent of the load capacitance; and a high frequency (20 Hz to 1 MHz) component that is approximately inversely proportional to the load capacitance.

The noise is measured with an SR560 low-noise amplifier (Gain = 1000), oscilloscope, and Agilent 34461A Voltmeter. The low-frequency noise is plotted in Figure 2. The RMS value is 120 uV with a peak-to-peak voltage of 600 uV.

PX200 Noise

Figure 2. Low frequency noise from 0.03 Hz to 20 Hz

The high frequency noise (20 Hz to 1 MHz) is listed in the table below versus load capacitance. The total RMS noise from 0.03 Hz to 1 MHz is found by summing the RMS values, that is $\sigma = \sqrt{\sigma^2_{LF} + \sigma^2_{HF}}$. For a load capacitance of less than 1 uF, the noise is primarily broadband thermal noise; however, for a capacitance of greater than 1 uF, the noise is primarily due to low-frequency noise.

Load Bandwidth HF Noise RMS Total Noise RMS
10 nF 393 kHz 530 uV 543 uV
30 nF 431 kHz 586 uV 598 uV
100 nF 367 kHz 689 uV 699 uV
300 nF 208 kHz 452 uV 468 uV
1 uF 88 kHz 261 uV 287 uV
3 uF 30 kHz 106 uV 160 uV
10 uF 9.3 kHz 56 uV 132 uV
30 uF 3.7 kHz 52 uV 131 uV
100 uF 1.3 kHz 47 uV 129 uV

Table 4. RMS noise versus load capacitance (0.03 Hz to 1 MHz)

Bridged Mode

In bridged mode, the load is connected between the outputs of two amplifiers, which doubles the output voltage span and power. Grounded loads cannot be driven using bridged mode. Care should be taken not to connect the negative side to ground accidentally, for example, by using a grounded oscilloscope probe.

Figure 3 shows how two amplifiers are connected to achieve +/-200V across a load. A +/-10V signal is applied to both amplifiers, and the bottom amplifier is configured in inverting mode. The total voltage across the load is +/-200V and the effective gain is twice the gain of a single amplifier. Common bridged-mode configurations are listed in Table 5.

The current limits in bridge mode are identical to normal operation. The power bandwidth calculator can also be used for predicting bridge-mode performance by entering the total voltage across the load. For the example in Figure 3, the total peak-to-peak output voltage is 400V. When entering this value to the calculator, an error will be shown since 400V is greater than the voltage span of a single amplifier; however, the calculator output is remains valid.

Bridge Config PX200

Figure 3. Bridge mode configuration for obtaining 200V

 

Load Voltage RMS Current Non-Inverting Amp Inverting Amp
+/-200V 1.5 A PX200-N100-P100 PX200-N100-P100
+/-100V 3.1 A PX200-N50-P50 PX200-N50-P50
0V to 200V 3.1 A PX200-P100 PX200-N100
0V to 300V 2.1 A PX200-P150 PX200-N150
0V to 400V 1.5 A PX200-P200 PX200-N200

Table 5. Common bridge-mode configurations

Delivery Contents

  • PX200 amplifier with plug-in screw terminal installed
  • IEC C13 power cable, suited to the shipping destination

Previous Versions

Hardware Version Manufactured Manual
V4 2017-2021 Download Datasheet

Warranty

PiezoDrive amplifiers are guaranteed for 12 months from the date of delivery. The warranty does not cover damage due to misuse.